
Efficient Transformation of MPEG-21 Metadata for Codec-agnostic Adaptation
in Real-time Streaming Scenarios∗

Michael Ransburg, Hubert Gressl, Hermann Hellwagner
Klagenfurt University, Multimedia Communication Group

Universitaetsstrasse 65-67, Klagenfurt, Austria
{first name}.{last name}@itec.uni-klu.ac.at

Abstract

Scalable media contents, such as the new MPEG-4 Scal-
able Video Codec enable to easily retrieve different quali-
ties of the media content by simply disregarding certain me-
dia segments. The MPEG-21-based codec-agnostic adap-
tation approach supports this concept by introducing an
XML-based Bitstream Syntax Description (BSD) which de-
scribes the different segments of a media content. Based
on this BSD, an adaptation node can intelligently adapt
any scalable media (i.e., remove specific media segments)
without the need for codec-specific knowledge. The adapta-
tion approach consists of 1) transforming this BSD and 2)
adapting the media based on the transformed BSD. In our
work we focus on the transformation step and evaluate dif-
ferent mechanisms with regards to their transformation effi-
ciency given several application scenarios. In particular we
compare the traditional stylesheet-based mechanisms with
a novel mechanism based on regular expressions. We quan-
titatively evaluate these mechanisms in different adaptation
scenarios, which vary with regards to the size and number
of required BSDs. Finally, we discuss the measurements and
also provide a qualitative evaluation with regards to scope
and comprehensiveness of both mechanisms.

1 Introduction

The information revolution of the last decade has re-
sulted in an impressive increase in the quantity of multi-
media content available to an increasing number of differ-
ent users (with different preferences) who access the con-
tent through a variety of devices and over diverse networks.
In order to react to this heterogeneous usage environments,
the designers of new media codecs attempt to include adap-
tation support into the codec design. These scalable media

∗Work partly supported by the European project ENTHRONE (IST-
038463)

codecs support the generation of a degraded version of the
original bitstream by means of simply removing bitstream
segments. Depending on which segments are removed, the
adapted version differs in one or more scalability dimen-
sions, i.e., lower temporal / spatial resolution or quality.
Note that not all of these dimensions are available for each
codec type, i.e., video or audio.

The recently finalized MPEG-4 Scalable Video Codec
(SVC) [9] is an example for a scalable codec. It seg-
ments the bitstream into Network Abstraction Layer Units
(NALUs) where each NALU belongs to a specific tempo-
ral, spatial and quality layer in the media content, which is
thereby organised in one base layer and several enhance-
ment layers. Another example for a scalable media codec
is the MPEG-4 Bit Slice Arithmetic Coding (BSAC) [6] au-
dio codec, which separates each audio sample in one portion
belonging to a base layer and up to 64 enhancement layer
elements which can be truncated in order to retrieve a lower
quality.

In Section 2 this paper introduces the MPEG-21-based
approach to dynamic and distributed multimedia adaptation,
which builds on top of these scalable codecs. Consequently,
we focus on one particular requirement which results from
this mechanism, i.e., to efficiently transform XML docu-
ments of various sizes. To this extend we introduce two
well-known XML transformation mechanisms in Section 3
and compare them to our approach, which is based on regu-
lar expressions, in Section 4. Finally, we quanitatively eval-
uate the different approaches in Section 5 and we end with
conclusions.

2 MPEG-21-based Dynamic and Distributed
Adaptation

MPEG-21 Digital Item Adaptation [8] supports scal-
able codecs by providing normative XML descriptions for
1) the current Usage Environment (UED), 2) the high-
level Bitstream Syntax (BSD) of the scalable media con-

tent and 3) the available adaptation options (AQoS). The
DIA-based adaptation approach consists of the following
steps: 1) Based on the AQoS and the UED(s), an Adap-
tation Decision-Taking Engine (ADTE) decides which seg-
ments of the scalable media content to drop in order to meet
the predefined QoS parameters of the session. 2) The BSD
is transformed according to this adaptation decision, i.e.,
the description of certain bitstream segments is removed. 3)
The bitstream is adapted according to the transformed BSD.

Since all of the DIA descriptions (including the transfor-
mation instructions for the BSD), i.e., all media-specific in-
formation, are provided together with the media bitstream,
this enables codec-agnostic adaptation nodes, which sup-
port any type of scalable media which is properly described
by those DIA descriptions.

The DIA-based adaptation mechanism was originally in-
tended for static adaptation where the BSD describes the
complete media bitstream and is transformed only once
before the media bitstream is provided to the consumer.
This is obviously inefficient in real-time streaming scenar-
ios with dynamic usage environments. This static approach
was therefore extended towards dynamic (and distributed)
scenarios. It is enabled by a BSD which no longer describes
the complete bitstream but only parts of it (e.g., access units
or group of pictures). These BSD descriptions need to in-
clude timing information for their synchronized processing
with the media content and are refered to as BSD Process
Units (PUs). This fragmentation of the DIA-based adap-
tation mechanism also enables distributed adaptation (i.e.,
multiple adaptation steps along the delivery chain) where
the BSDs are transmitted with the media segments which
they describe. Consequently, the DIA-based adaptation pro-
cess is performed on each of these BSDs (using up to date
UEDs) which enables dynamic adaptation.

Apart from static adaptation - where the BSD can have
a considerable size of several megabytes - dynamic adapta-
tion introduces several further adaptation granularities. De-
pending on the application scenario BSD PUs can describe
NALUs, Access Units (AUs), or Group of Pictures (GoPs).
The very fine NALU-granularity has the advantage of a very
low adaptation delay, since any adaptation decision is ap-
plied almost immediately. The coarser GoP-granularity in-
troduces adaptation delay, since adaptation decisions can
only be applied at GoP boundaries. However, it is advanta-
geous in distributed adaptation scenarios since higher com-
pression factors are possible due to the larger size of the
BSD PUs.

In any of the above cases, the BSD (PUs) need to be
transformed according to the adaptation decision. Evaluat-
ing existing and our novel approach to this transformation
process (in light of the different adaptation granularities in-
troduced above) therefore represents the focus of this paper.

For further reading on MPEG-21-based dynamic and

distributed adaptation, we refer to [5] and [7].

3 Existing XML Transformation Mecha-
nisms

Extensible Stylesheet Language Transformations
(XSLT) [4] is a declarative, template based, transformation
language for XML documents. An XSLT processor
needs two inputs: an XSLT style sheet that contains the
transformation rules expressed in XML and the input XML
document represented as DOM1 tree. In addition a set
of parameters and parameter values can be passed to the
XSLT processor to steer the transformation. The XSLT
processor traverses the DOM tree and applies the changes
according to the transformation rules defined in the style
sheet.

Streaming Transformations for XML (STX) [3] uses style
sheets with XSLT-like notation to perform the transforma-
tion of XML documents. Instead of a DOM representation
of the XML document the event-based SAX2 approach is
used. Structural events are extracted from the input doc-
ument and passed to the STX processor that filters or al-
ters the events corresponding to the STX style sheet. In
contrast to XSLT the event-based STX approach does not
mandate to have the complete document in memory, how-
ever this advantage comes at the cost of generating the SAX
events. Additionally, this causes a lack of context informa-
tion compared to DOM, therefore STX supports the buffer-
ing of events what makes it equally powerful as XSLT.

Both XSLT and STX support the codec-agnostic adapta-
tion approach by providing a generic transformation process
that is controlled by a codec-specific style sheet which can
be provided together with the media content.

4 Regular Expressions for XML Transfor-
mation

Regular expressions [1] allow to specify a pattern for
matching/replacing a substring in a string. They correspond
to a type 3 grammar according to the Chomsky hierarchy [2]
which creates a regular language recognizeable by a finite
state automaton. Regular expressions are thus much less
expressive than XSLT, which is Turing-complete and there-
fore represents a type 0 grammar. Similar to style sheets,
regular expressions can be provided together with the con-
tent, only requiring a generic regular expressions processor
at the adaptation node, thus supporting the codec-agnostic
adaptation paradigma.

In order to test their applicability to our application sce-
nario of transforming BSD (PUs), we implemented XSLT

1Document Object Model, http://www.w3.org/DOM/
2Simple API for XML, http://www.saxproject.org/

and STX style sheets for SVC and BSAC adaptation and
then tried to realize the same functionality using regular ex-
pressions. We show an example BSD PU for SVC in Listing
1, which describes start and length of every NALU together
with a marker which indicates priority, temporal id, spatial
id and quality id, thus identifiying which enhancement layer
the described NALU belongs to. For SVC, the transforma-
tion involves disregarding gBSDUnits from the BSD (PUs)
if the value of the marker indicates that the NALU belongs
to a layer which shall be dropped according to the adap-
tation decision. For BSAC the transformation additionally
requires to update certain values in the BSD (PU).

For both cases we were able to implement the corre-
sponding regular expressions. Listing 2 shows the regu-
lar expression for SVC, which matches (i.e., removes) gBS-
DUnits with quality id between 1 and 9, i.e., removes qual-
ity enhancement layers 1 and 2. However, we encountered
certain limitations which we describe below together with
our approaches to encounter them.

Listing 1. BSD PU describing an SVC AU
<dia :DIA <!−− namespaces ommited f o r b r e v i t y −−>>
<d i a : D e s c r i p t i o n x s i : t y p e =”gBSDType” a d d r e s s U n i t =” b y t e ”

addressMode=” A b s o l u t e ”>
<gBSDUnit s t a r t =” 0 ” l e n g t h =” 501 ” marker =”P0T0S0Q0” />
<gBSDUnit s t a r t =” 501 ” l e n g t h =” 815 ” marker =”P0T0S0Q1” />
<gBSDUnit s t a r t =” 1316 ” l e n g t h =” 1602 ” marker =”P0T0S0Q2” />
<gBSDUnit s t a r t =” 2918 ” l e n g t h =” 507 ” marker =”P0T0S1Q0” />
<gBSDUnit s t a r t =” 3425 ” l e n g t h =” 1605 ” marker =”P0T0S1Q1” />
<gBSDUnit s t a r t =” 5030 ” l e n g t h =” 3055 ” marker =”P0T0S1Q2” />
<gBSDUnit s t a r t =” 8085 ” l e n g t h =” 1375 ” marker =”P0T0S2Q0” />
<gBSDUnit s t a r t =” 9460 ” l e n g t h =” 5189 ” marker =”P0T0S2Q1” />
</ d i a : D e s c r i p t i o n></ d ia :DIA>

Listing 2. Regular Expression for SVC
<gBSDUnit (.∗ ?) marker =\”P[0−9]T[0−9]S[0−9]Q[1−9]\ ” />

Unlike style sheets, regular expressions are by itself not
parametrizable, which is however needed to implement a
certain adaptation decision provided by the ADTE. There
are two solutions to this problem:

The obvious solution would be to extend regular expres-
sions to be parametrizable, i.e., to introduce placeholders
to the regular expressions which are replaced by the out-
put from the ADTE. This replacement, i.e., the customiza-
tion of the regular expression can again be performed by a
regular expression. However, in order to enable this, addi-
tional control structures which steer this customization of
the regular expression are necessary. These are traditionally
provided by the programming language which uses the reg-
ular expressions and need to be defined, since they are not
available in the generic regular expression processor in our
appliation scenario.

A simpler solution is proposed which does not need any
extensions to the normative regular expressions. The ADTE
is a generic process which is steered by the AQoS. One pos-
sible layout for the AQoS is to contain tables which map a

specific UED to an adaptation decision, e.g., the number of
quality layers which shall be dropped from the media con-
tent in case that the available bandwidth drops to a certain
value. We propose to align the AQoS description to directly
output a regular expression (instead of the number of qual-
ity layer in the above example). This design change of the
AQoS (which does not inflict any changes to the standard)
allows to use the generic ADTE to map UEDs to regular ex-
pressions which then transform the BSD (PUs) in order to
react to the given UED.

The BSAC requirement to update certain values in the
BSD (PUs) leads to an additional requirement. That is, the
regular expressions need to indicate whether they replace
the matching substring by an empty string (i.e., disregard
elements) or by another string (i.e., update values). For this
we propose to adopt the corresponding Perl3 syntax, i.e.,
s/<regular expression>/<replacement string>/.

To conclude, the design decisions described above al-
low the regular expressions to fullfill the same tasks as the
style sheets for our application. Consequently, we perform
a quantitative evaluation in the next section.

5 Evaluation and Discussion

In this section we compare the time and memory needed
for transforming SVC and BSAC (where applicable) BSD
(PUs) of various size, i.e., NALU, AU, GoP granularity
(with GoP size 16) and additionally a BSD containing 3000
AUs in order to represent static, server-based adaptation.
For STX, we use Joost4, for XSLT we use libxslt5 and for
regular expressions we rely on the boost regular expressions
library6. We only measure the time needed for the actual
transformation and ignore any startup overhead (including,
e.g., parsing the BSD and the style sheet), since their con-
tribution to the overall CPU load is negligible in dynamic
adaptation scenarios. We repeated all tests 500 times and
only used the last 100 test runs for our measurements. This
resulted in an insignificant deviation in the results, which is
therefore not further considered. Additionally, for each test
case, we measured the performance for disregarding all gB-
SDUnits (dropall), disregarding no gBSDUnit (nothing) and
disregarding half of the gBSDUnits (inbetween) in order to
cover different adaptation cases.

All tests were performed on a Dell Optiplex GX620
desktop with an Intel Pentium D 2.8 GHz processor and
1024 MB of RAM using Fedora Core 6 Linux with Kernel
version 2.6.20 as an operating system. Memory consump-
tion was measured using the process status (ps) tool and

3Perl, http://www.perl.org
4Joost version 2007-07-18, http://joost.sourceforge.net
5libxslt version 1.1.21, http://xmlsoft.org/XSLT
6Boost.Regex version 1.33.1, http://www.boost.org/libs/regex/doc/

Figure 1. NALU granularity performance

Figure 2. AU granularity performance

time measurements where performed based on the gettime-
ofday method.

Figure 1, 2, 3 and 4 show the results for NALU, AU,
GoP and 3000 AU granularity, respectively. As can be seen,
regular expressions increase transformation performance at
least by a factor 4 compared to the other approaches. Since
the transformation takes a considerable amount of time in
our adaptation node[7] (on par with the actual adaptation of
the bitstream), the usage of regular expressions significantly
increases the throughput of the adaptation node. Addition-
ally the measurements show that for small BSD PUs (i.e.,
NALU and AU granularity) the XSLT mechanism performs
significantly better than the STX mechanism. However, for
larger BSDs STX is performing better than XSLT, which
is particularly apparent for the BSD describing 3000 AUs.
This is due to the event-based approach of STX which does
not mandate to keep the complete XML document in mem-
ory. The break-even-point between STX and XSLT perfor-
mance is at 60 KB / 74 AUs for BSAC and 4,8 KB / 8 AUs
for SVC - apparently the additional update operations for
BSAC are the reason of this difference. Memory consump-
tion for small BSD PUs is insignificant, however for larger
BSDs - such as our BSD example with 3000 AUs - mem-
ory consumption becomes significant for XSLT (i.e., 59.5
MB for SVC and 111.7 MB for BSAC) and slows down
processing considerably as can be seen in Figure 4. Gener-
ally, regular expressions again perform best with regards to
memory consumption.

Figure 3. GoP granularity performance

Figure 4. Performance for 3000 AUs

6 Conclusion

In this paper we described the state of the art in XML
transformation in order to transform BSD (PUs) for MPEG-
21-based codec-agnostic multimedia adaptation and intro-
duced our novel approach, which relies on regular expres-
sions. We qualitatively and quantitatively compared the dif-
ferent approaches. The results show that our approach is a
viable alternative which significantly increases transforma-
tion performance, which in return increases the throughput
of our codec-agnostic adaptation node.

References

[1] IEEE Std 1003.1. IEEE, 2004.
[2] N. Chomsky. Three models for the description of lan-

guage. IRE Transactions on Information Theory, 2(3):113–
124, 1956.

[3] P. Cimprich, O. Becker, C. Nentwich, H. Jirousek, M. Batsis,
P. Brown, and M. Kay. Streaming Transformations for XML
(STX) Version 1.0. Technical report, April 2007.

[4] J. Clark. XSL Transformations (XSLT) Version 1.0. Technical
report, W3C, November 1999. W3C Recommendation.

[5] A. Hutter, P. Amon, G. Panis, E. Delfosse, M. Ransburg, and
H. Hellwagner. Automatic Adaptation of Streaming Multi-
media Content in a Dynamic and Distributed Environment.
In ICIP, Genova, Italy, September 2005.

[6] H. Purnhagen. An Overview of MPEG-4 Audio Version 2.
In International Conference on High-Quality Audio Coding,
Florence, Italy, September 1999.

[7] M. Ransburg, C. Timmerer, H. Hellwagner, and S. Devillers.
Design and evaluation of a metadata-driven adaptation node.
In WIAMIS, Santorin, Greece, June 2007.

[8] A. Vetro and C. Timmerer. Digital Item Adaptation:
Overview of Standardization and Research Activities. IEEE
Transactions on Multimedia, 7(3):418–426, June 2005.

[9] T. Wiegand, J. Ohm, G. Sullivan, and A. Luthra. Special Is-
sue on Scalable Video Coding - Standardization and Beyond.
IEEE Transactions on Circuits and Systems for Video Tech-
nology, 17(9), September 2007.

